USO DE PERFILES ELECTRO Soldados COMO PILOTES HINCADOS

Motivados por el uso que hace el Taller de Puentes del Ministerio de Transporte y Comunicaciones de Venezuela de los perfiles electrosoldados dispuestos en pares como pilotes y miembros del pórtico de apoyo de los puentes de emergencia, se suministrarán Tablas con parámetros para el diseño de los pilotes.

De acuerdo con los códigos y reglamentos para fundaciones de los Estados Unidos, el uso de perfiles individuales como pilotes debe satisfacer los siguientes requisitos:

- Altura entre las alas, h, no menor de 200 mm.
- Ancho de las alas, bp, no mayor de 0.85 h.
- Peso mínimo de 54 kgf / m.
- Tensión admisible de trabajo de 0.35 a 0.50Fy.
- Tensión admisible durante la hincada, 0.90Fy.

Los valores dados en las tablas anexas, permiten calcular la capacidad a la carga axial de los pilotes, según las fórmulas:

\[
Q_a = Q_p + Q_s = A_p q_p + A_s q_s
\]

\[
Q = \frac{Q_a}{FS}
\]

donde

- Q = Carga de trabajo del pilote.
- Qa = Carga de agotamiento del pilote.
- Qp = Carga de agotamiento de punta.
- Qs = Carga de agotamiento por fricción.
- FS = Factor de seguridad, mínimo FS = 2.0
- qp = Resistencia última de punta.
- qs = Resistencia última por fricción.
- Ap = Área de la punta.
- As = Área lateral de la superficie total de la sección En la Tabla anexa se expresa por unidad de longitud del pilote.
Los valores de las áreas consideran el fenómeno de taponamiento de las alas del pilote para la definición de las áreas de trabajo.

La capacidad de los pilotes solicitados a tracción en suelos cohesivos se calcula con la fórmula:

\[P_u = A_d \cdot C \cdot L \]

donde

- \(P_u \) = Resistencia de agotamiento a la tracción.
- \(A_d \) = Area lateral de la superficie total de la sección, usualmente expresada por unidad de longitud del pilote.
- \(C \) = Cohesión
- \(L \) = Coeficiente de adherencia

Referencia

Perazzo, P. *Uso de Perfiles Metálicos como Pilas de Fundación*. Informes para PROPERCA, Caracas, 1991

Propiedades de perfiles Properca como pilotes hincados

<table>
<thead>
<tr>
<th>Designación</th>
<th>Área (A)</th>
<th>Carga de agotamiento (Q_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 240 x 60.4</td>
<td>77.0</td>
<td>97.5</td>
</tr>
<tr>
<td>CP 260 x 65.7</td>
<td>83.6</td>
<td>106</td>
</tr>
<tr>
<td>CP 200 x 50.1</td>
<td>63.8</td>
<td>88.7</td>
</tr>
<tr>
<td>CP 220 x 55.3</td>
<td>70.4</td>
<td>89.0</td>
</tr>
<tr>
<td>II VP 200 x 36.0</td>
<td>91.6</td>
<td>116</td>
</tr>
<tr>
<td>II VP 240 x 37.8</td>
<td>96.4</td>
<td>122</td>
</tr>
<tr>
<td>II VP 250 x 44.2</td>
<td>114</td>
<td>143</td>
</tr>
<tr>
<td>II VP 300 x 41.3</td>
<td>105</td>
<td>133</td>
</tr>
<tr>
<td>II VP 300 x 47.8</td>
<td>123</td>
<td>154</td>
</tr>
<tr>
<td>II VP 350 x 56.0</td>
<td>144</td>
<td>181</td>
</tr>
<tr>
<td>II VP 400 x 64.2</td>
<td>165</td>
<td>288</td>
</tr>
<tr>
<td>II VP 420 x 67.5</td>
<td>168</td>
<td>211</td>
</tr>
</tbody>
</table>

Notas:
- Para los perfiles de esta tabla la tensión máxima durante la hincada es de 2280 kgf/cm².
- El valor de Q tabulado no está afectado del factor de seguridad recomendado por el estudio de suelos.
Pilotes metálicos

Areas de punta, A_p, y áreas laterales por unidad de longitud, A_s/L

<table>
<thead>
<tr>
<th>% de Taponamiento</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Pilote serie d x peso</td>
<td>A_p/cm^2</td>
<td>$A_s/L/\text{cm}$</td>
<td>A_p/cm^2</td>
<td>$A_s/L/\text{cm}$</td>
</tr>
<tr>
<td>CP 240 x 60.4</td>
<td>77.8</td>
<td>142</td>
<td>576</td>
<td>96</td>
</tr>
<tr>
<td>CP 260 x 65.7</td>
<td>83.6</td>
<td>155</td>
<td>676</td>
<td>104</td>
</tr>
<tr>
<td>CP 220 x 50.1</td>
<td>63.8</td>
<td>118</td>
<td>400</td>
<td>80</td>
</tr>
<tr>
<td>CP 220 x 55.5</td>
<td>70.4</td>
<td>130</td>
<td>484</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% de Taponamiento</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Pilote serie d x peso</td>
<td>A_p/cm^2</td>
<td>$A_s/L/\text{cm}$</td>
<td>A_p/cm^2</td>
<td>$A_s/L/\text{cm}$</td>
</tr>
<tr>
<td>II VP 200 x 36.0</td>
<td>296</td>
<td>115</td>
<td>500</td>
<td>90</td>
</tr>
<tr>
<td>II VP 240 x 37.8</td>
<td>337</td>
<td>120</td>
<td>575</td>
<td>96</td>
</tr>
<tr>
<td>II VP 250 x 44.2</td>
<td>432</td>
<td>140</td>
<td>750</td>
<td>110</td>
</tr>
<tr>
<td>II VP 300 x 41.3</td>
<td>486</td>
<td>145</td>
<td>900</td>
<td>120</td>
</tr>
<tr>
<td>II VP 300 x 47.8</td>
<td>511</td>
<td>150</td>
<td>900</td>
<td>120</td>
</tr>
<tr>
<td>II VP 350 x 56.0</td>
<td>684</td>
<td>175</td>
<td>1130</td>
<td>140</td>
</tr>
<tr>
<td>II VP 400 x 64.2</td>
<td>882</td>
<td>200</td>
<td>1600</td>
<td>160</td>
</tr>
<tr>
<td>II VP 420 x 67.5</td>
<td>923</td>
<td>210</td>
<td>1688</td>
<td>164</td>
</tr>
</tbody>
</table>

Manual de Estructuras de Acero